Detecting Epileptic Regions Based on Global Brain Connectivity Patterns

نویسندگان

  • Andrew Sweet
  • Archana Venkataraman
  • Steven M. Stufflebeam
  • Hesheng Liu
  • Naoro Tanaka
  • Joseph R. Madsen
  • Polina Golland
چکیده

We present a method to detect epileptic regions based on functional connectivity differences between individual epilepsy patients and a healthy population. Our model assumes that the global functional characteristics of these differences are shared across patients, but it allows for the epileptic regions to vary between individuals. We evaluate the detection performance against intracranial EEG observations and compare our approach with two baseline methods that use standard statistics. The baseline techniques are sensitive to the choice of thresholds, whereas our algorithm automatically estimates the appropriate model parameters and compares favorably with the best baseline results. This suggests the promise of our approach for pre-surgical planning in epilepsy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods

Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...

متن کامل

Stress and Perception of Emotional Stimuli: Long-term Stress Rewiring the Brain

Introduction: Long-term stressful situations can drastically influence one’s mental life. However, the effect of mental stress on recognition of emotional stimuli needs to be explored. In this study, recognition of emotional stimuli in a stressful situation was investigated. Four emotional conditions, including positive and negative states in both low and high levels of arousal were analy...

متن کامل

Investigating the functional communication network in patients with knee osteoarthritis using graph-based statistical models

Introduction: Osteoarthritis of the knee is the most prevalent type of arthritis that causes persistent pain and reduces the quality of life. However, no treatment alleviates symptoms or stops the disease from progressing. Functional magnetic resonance imaging (fMRI) studies can provide information on neural mechanisms of pain by assessing correlation patterns among the different regions of the...

متن کامل

Identification of mild cognitive impairment disease using brain functional connectivity and graph analysis in fMRI data

Background: Early diagnosis of patients in the early stages of Alzheimer's, known as mild cognitive impairment, is of great importance in the treatment of this disease. If a patient can be diagnosed at this stage, it is possible to treat or delay Alzheimer's disease. Resting-state functional magnetic resonance imaging (fMRI) is very common in the process of diagnosing Alzheimer's disease. In th...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 16 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013